Availability: In Stock

Probabilistic Machine Learning: Advanced Topics

SKU: BF-0353

Original price was: $150.00.Current price is: $10.00.

  • Publisher: The MIT Press
  • Author: Kevin P. Murphy
  • Language: ‎English
  • Format: ‎PDF
  • Pages: 1354 pages

Description

Probabilistic Machine Learning: Advanced Topics (Adaptive Computation and Machine Learning series)

An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision-making under uncertainty.

An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students with detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.

  • Covers the generation of high-dimensional outputs, such as images, text, and graphs.
  • Discusses methods for discovering insights about data, based on latent variable models
  • Considers training and testing under different distributions
  • Explores how to use probabilistic models and inference for causal inference and decision-making
  • Features online Python code accompaniment

Additional information

Author

Publisher

The MIT Press

Format

PDF

Language

English

Reviews

There are no reviews yet.

Be the first to review “Probabilistic Machine Learning: Advanced Topics”

Your email address will not be published. Required fields are marked *